Skip Navigation Links

The Key to Good Health (part 2)

QUESTION: "Would this plant do away with city dumps and garbage dumps where they just burn the garbage?"

ANSWER: Of course, and not only for garbage, but for most of the trash, too. In Los Angeles the refuse contains about 50 to 60% paper. Paper is an organic product, it comes from the soil and the cellulose decomposes the same as cabbage leaves and celery, etc. There is thus no objection to the paper. In trash you have also other things — metal rags, etc., which should be salvaged. Rags of wool or cotton will, of course, decompose, but not nylon because the microbes are very particular in not wanting anything synthetic.

 

QUESTION: "In converting these industrial by-products into organic fertilizers, how would you eliminate some of the very poisonous materials that we find in by-products?"

ANSWER: That is a very interesting question. Waste products from most food processing plants, breweries, canning factories, flour mills, packing houses, etc. — they offer no problem.

But then you have, for instance, chemical factories that produce pesticides.

When those pesticides are defective, they are sometimes thrown into sewers. That is bad for the sewage and for our process. But sooner or later that has to be taken care of in some way anyway, because such pollution of our water supply is terribly destructive.

The growing use of detergents in American households is already now making the sewage treatment process more difficult to operate. Not yet so that it doesn't function, but if it should continue to increase, there will have to be some new rules.

There is already now a considerable check on industry not to dump certain materials into the sewer. Such poisons as DDT, a very serious poison which is now almost everywhere present, is actually broken down by the microbial activities in the fermentation process if you do not have enough DDT to kill all the microbes. If not present in great quantities, it is broken down in fertile soil in the same way, but you must have GOOD fertile soil with an abundance of microbes to do it. Good soil can eventually recuperate from the abuse rendered by small amounts of DDT. All of such poisons are not broken down, though.

 

QUESTION: "In the sewage fermentation process, what is the danger, or lack of danger, of passing on diseases through use of human waste in this process?"

ANSWER: That is a very good question to bring up. Here again, natural laws are shown at their very best. In a proper composting process, the microbe's themselves develop a temperature as high as 160 to 180° F. Now there are no pathogens — disease producing organisms — that can stand more than about 125° F. for more than a few seconds. So there is absolutely no danger of harmful bacteria surviving in compost. Even if you aerate the process that I am describing with cold air, the microbes will raise the temperature to 160° F. and more. So natural laws are provided to guarantee ample safety.

Now as far as such life as nematodes is concerned, which under certain circumstances can survive high temperatures, we still don't need to worry. They are devoured by those busy little soil microbes. They love nematodes! In my experiments with com-post over the last 20 years, I must have had cuts on my hands hundreds of times. I have deliberately never taken any precautions, and I have never had any infection!

Soil is a great cleanser! Soil is where disease has to end! The Tetani microbes, for example, do not exist in fertile soil. But you could get Tetanus from a wound, caused by falling on a street or on a gravel road, especially if animal excrement is around.

 

QUESTION: "Mr. Eweson, I understand that you have built some units to convert sewage to compost in different countries. Would you explain how that works and how long it takes to convert that into compost?"

ANSWER: The fermentation cycle is from five to seven days, but can probably be brought down to four days. This means that sewage and garbage after only four days is converted into concentrated soil fertility. You can hardly distinguish it from very rich topsoil. The process is simple and works very well. You don't expect me to say anything else!

As a matter of fact, the county of Los Angeles has built an experimental plant to test my system, and they have only recently stopped these experiments, stating that they are satisfied that the process is practical on a large scale. So someday you may see it here too.

 

QUESTION: "In your process for use of municipal by-products, how do you handle the volume of contaminated water that would go to the plant along with the sewage?"

ANSWER: For my composting process we cannot use the highly diluted sewage water directly from the sewers. Excess water has to be eliminated by conventional types of sewage treatment plants, although they can be very simplified. We can use the sludge residue with anywhere from 10 to 40% dry content. But the remaining sewage water which still holds from ½ % to 1% solids can also be fermented by a supplementary fermentation process.

We can no longer afford to pollute our water supply with sewage. This is a problem that has to be solved very soon. I was very impressed today to see in the August issue of your PLAIN TRUTH magazine an excellent article on this very subject. It is high time that somebody does something about it.

 

QUESTION: "You mentioned growing some of the crops out here on California desert lands. When we bring water into a desert area, for a short time it seems as though the land is fabulously rich and then it loses productivity. Is that due to possibly just a very minimum portion of vegetable matter being in the soil? Is this desert land particularly rich in minerals so that it offsets the lack of humus for a short time?"

ANSWER: I shall try to explain that. It is true that this particular soil is rich in minerals that plants can utilize. The minerals are still there largely because there is very little rain to leach them out. With such land you can make good crops on a minimum of good organic matter. After the plants have used up those available mineral nutrients and as there is very little organic matter left in the soil, these nutrients cannot be replenished. There is, you see, a lack of humus and soil life to break down and decompose the rock material!

It is the activity of the microbes in the soil that constantly liberates all of the mineral nutrients needed for healthy plant growth. If you take the average agricultural soil in the United States, you will have from two to ten thousand pounds of phosphorus per acre, twenty to thirty thousand of potassium per acre in the top six inches — and much greater quantities in the subsoil. All other mineral plant nutrients will be found in relatively equal abundance.

However, they are not in compounds that the plants can utilize. If you fertilize such land with good organic fertilizers which stimulate microbial activities, then these enormous quantities of nutrients will gradually be released for utilization by the plants.

 

QUESTION: "I have practiced the use of compost pits several times in the past on a small farm. You made mention of introducing some type of soil microbe to start a compost pit. I now have one that has so far been made with soil and wet leaves. Apparently there aren't enough microbes in the soil to institute the action. How do you begin it?"

ANSWER: You are beginning an inquiry into the intricacies of the corn-posting art. The first thing I would like to say is this: If in this compost pile you have only leaves and soil, you don't have a very good base. Good compost is preferably made from various kinds of organic raw materials. Everything needs variety in its diet. I wouldn't say it is lack of inoculation, but rather the uniformity of your raw material that creates difficulties for you.

There have been some elaborate investigations made at the University of Southern California on the subject of inoculation for good production of compost. The conclusion after three years of experiments was that normal compost piles, made from garbage, for instance, need no special inoculation since garbage contains a great variety of organic matter. Soil microbes are everywhere present and if conditions are favorable they will grow in numbers enormously fast so that the proper microbial flora will soon develop.

Naturally, if you have good compost available and mix that with your new compost materials, then you would have a very effective inoculation and a faster process. In your case the poor result is obtained because you have mainly leaves. Leaves have the tendency of matting, which prevents access of the air and subsequent good inoculation.

This fermentation that we are now talking about in the making of compost is an aerobic form of decomposition for which air is always necessary. Otherwise you will have a putrefactive, or anaerobic (airless), development with bad odors because the microbial requirements for oxygen will be obtained by reduction. In soil you should never have putrefaction but only aerobic decomposition which gives no bad, odors.

 

QUESTION: "How much effect does the amount of organic materials in the soil have on the retention of water in the soil?"

ANSWER: It has a great effect. I would say that organic; matter is so porous it can hold at least its own volume in water, and if you have 10% good organic matter in soil, you will increase this soil's water-holding capacity by something like 100%. With good soil, a 4-inch rain would cause little or no runoff. Even ½ inch of rain on poor land will cause erosion and will flood lower areas. The fine inorganic matter seals up the pores so that little or no water enters the soil.

By impoverishing our soil, we thus also lose the ability of the soil to hold and conserve moisture. Instead of building dams to hold back rivers, it would be much better to plant trees and improve the soil of the surrounding land. Naturally this isn't always practical, but dams aren't always practical either because, if the land is poor, dams will soon silt up and become ineffective.

There again, by violating natural laws, we create all kinds of disturbances and we don't know where it's going to end. Some effects of soil abuse we have touched on tonight, but there are many more, in fact, enough to write whole books about.

 

QUESTION: "Do earthworms produce fertility in the soil over and beyond what the rotting organic material would produce itself?"

ANSWER: Yes. Earthworms are one of those "little animals" that belong to good soil and do a terrific job in decomposing both organic matter and dirt! Darwin calculated that one worm puts through him or herself a quantity of soil that is almost unbelievable. Soil that has passed through the intestinal process of a worm has improved tremendously in quantities of plant-available potassium and phosphate.

It has also been shown, and again I think it was by Darwin, that a good acre of land contains several tons of worms. Their work is also very important for aeration of the soil by means of their extensive burrowing. I have conducted experiments in many countries, and it is amazing to see how quickly the earthworm population increases with soil improvements. You wonder where they come from.

I have experimented with soil in Spain where I could not find any worms. By improving it, it was teeming with them two years later. Earthworms are undoubtedly "little friends" that are very beneficial to the soil.

A fertile acre of land has also millions of insects of various kinds, all of which are doing their jobs. Some are devouring parasites, others are preparing organic material for subsequent decomposition by bacteria. All of them also fertilize the soil with their wastes and dead bodies.

I thank you very much, ladies and gentlemen. It has been a pleasure to be with you.

 

And we wish to thank Mr. Eweson for consenting to have this material available for all who read The PLAIN TRUTH.